
Pythagoras and the Pythagoreans1

Historically, the name Pythagoras means much more than the
familiar namesake of the famous theorem about right triangles. The
philosophy of Pythagoras and his school has become a part of the very
fiber of mathematics, physics, and even the western tradition of liberal
education, no matter what the discipline.

The stamp above depicts a coin issued by Greece on August 20,
1955, to commemorate the 2500th anniversary of the founding of the
first school of philosophy by Pythagoras. Pythagorean philosophy was
the prime source of inspiration for Plato and Aristotle whose influence
on western thought is without question and is immeasurable.

1 c°G. Donald Allen, 1999
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1 Pythagoras and the Pythagoreans

Of his life, little is known. Pythagoras (fl 580-500, BC) was born in
Samos on the western coast of what is now Turkey. He was reportedly
the son of a substantial citizen, Mnesarchos. He met Thales, likely as a
young man, who recommended he travel to Egypt. It seems certain that
he gained much of his knowledge from the Egyptians, as had Thales
before him. He had a reputation of having a wide range of knowledge
over many subjects, though to one author as having little wisdom (Her-
aclitus) and to another as profoundly wise (Empedocles). Like Thales,
there are no extant written works by Pythagoras or the Pythagoreans.
Our knowledge about the Pythagoreans comes from others, including
Aristotle, Theon of Smyrna, Plato, Herodotus, Philolaus of Tarentum,
and others.

Samos
Miletus

Cnidus

Pythagoras lived on Samos for many years under the rule of
the tyrant Polycrates, who had a tendency to switch alliances in times
of conflict � which were frequent. Probably because of continual
conflicts and strife in Samos, he settled in Croton, on the eastern coast
of Italy, a place of relative peace and safety. Even so, just as he arrived



Pythagoras and the Pythagoreans 3

in about 532 BCE, Croton lost a war to neighboring city Locri, but
soon thereafter defeated utterly the luxurious city of Sybaris. This is
where Pythagoras began his society.

2 The Pythagorean School

The school of Pythagoras was every bit as much a religion as a school
of mathematics. A rule of secrecy bound the members to the school,
and oral communication was the rule. The Pythagoreans had numerous
rules for everyday living. For example, here are a few of them:

� To abstain from beans.

� Not to pick up what has fallen.

� Not to touch a white cock.

� Not to stir the fire with iron.

...

� Do not look in a mirror beside a light.

Vegetarianism was strictly practiced probably because Pythago-
ras preached the transmigration of souls2.

What is remarkable is that despite the lasting contributions of the
Pythagoreans to philosophy and mathematics, the school of Pythagoras
represents the mystic tradition in contrast with the scientific. Indeed,
Pythagoras regarded himself as a mystic and even semi-divine. Said
Pythagoras,

�There are men, gods, and men like Pythagoras.�

It is likely that Pythagoras was a charismatic, as well.

Life in the Pythagorean society was more-or-less egalitarian.

� The Pythagorean school regarded men and women equally.
2reincarnation
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� They enjoyed a common way of life.

� Property was communal.

� Even mathematical discoveries were communal and by association
attributed to Pythagoras himself � even from the grave. Hence,
exactly what Pythagoras personally discovered is difficult to as-
certain. Even Aristotle and those of his time were unable to at-
tribute direct contributions from Pythagoras, always referring to
�the Pythagoreans�, or even the �so-called Pythagoreans�. Aristo-
tle, in fact, wrote the book On the Pythagoreans which is now
lost.

The Pythagorean Philosophy

The basis of the Pythagorean philosophy is simply stated:

�There are three kinds of men and three sorts of people
that attend the Olympic Games. The lowest class is made
up of those who come to buy and sell, the next above them
are those who compete. Best of all, however, are those who
come simply to look on. The greatest purification of all is,
therefore, disinterested science, and it is the man who devotes
himself to that, the true philosopher, who has most effectually
released himself from the �wheel of birth�.�3

The message of this passage is radically in conflict with modern values.
We need only consider sports and politics.

? Is not reverence these days is bestowed only on the �super-
stars�?

? Are not there ubiquitous demands for accountability.

The gentleman4, of this passage, has had a long run with this
philosophy, because he was associated with the Greek genius, because

3Burnet, Early Greek Philosophy
4How many such philosophers are icons of the western tradition? We can include Hume,

Locke, Descartes, Fermat, Milton, Göthe, Thoreau. Compare these names to Napoleon, Nel-
son, Bismark, Edison, Whitney, James Watt. You get a different feel.



Pythagoras and the Pythagoreans 5

the �virtue of contemplation� acquired theological endorsement, and
because the ideal of disinterested truth dignified the academic life.

The Pythagorean Philosophy ála Bertrand Russell

From Bertrand Russell,5, we have

�It is to this gentleman that we owe pure mathematics.
The contemplative ideal � since it led to pure mathematics
� was the source of a useful activity. This increased it�s
prestige and gave it a success in theology, in ethics, and in
philosophy.�

Mathematics, so honored, became the model for other sciences.
Thought became superior to the senses; intuition became superior to
observation. The combination of mathematics and theology began with
Pythagoras. It characterized the religious philosophy in Greece, in the
Middle ages, and down through Kant. In Plato, Aquinas, Descartes,
Spinoza and Kant there is a blending of religion and reason, of moral
aspiration with logical admiration of what is timeless.

Platonism was essentially Pythagoreanism. The whole concept
of an eternal world revealed to intellect but not to the senses can be
attributed from the teachings of Pythagoras.

The Pythagorean School gained considerable influence in Croton
and became politically active � on the side of the aristocracy. Probably
because of this, after a time the citizens turned against him and his
followers, burning his house. Forced out, he moved to Metapontum,
also in Southern Italy. Here he died at the age of eighty. His school lived
on, alternating between decline and re-emergence, for several hundred
years. Tradition holds that Pythagoras left no written works, but that
his ideas were carried on by eager disciples.

5A History of Western Philosophy. Russell was a logician, mathematician and philosopher from
the Þrst half of the twentieth century. He is known for attempting to bring pure mathematics
into the scope of symbolic logic and for discovering some profound paradoxes in set theory.
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3 Pythagorean Mathematics

What is known of the Pythagorean school is substantially from a book
written by the Pythagorean, Philolaus (fl. c. 475 BCE) of Tarentum.
However, according to the 3rd-century-AD Greek historian Diogenes
Laërtius, he was born at Croton. After the death of Pythagoras, dis-
sension was prevalent in Italian cities, Philolaus may have fled first to
Lucania and then to Thebes, in Greece. Later, upon returning to Italy,
he may have been a teacher of the Greek thinker Archytas. From his
book Plato learned the philosophy of Pythagoras.

The dictum of the Pythagorean school was

All is number

The origin of this model may have been in the study of the constella-
tions, where each constellation possessed a certain number of stars and
the geometrical figure which it forms. What this dictum meant was
that all things of the universe had a numerical attribute that uniquely
described them. Even stronger, it means that all things which can be
known or even conceived have number. Stronger still, not only do
all things possess numbers, but all things are numbers. As Aristotle
observes, the Pythagoreans regarded that number is both the princi-
ple matter for things and for constituting their attributes and permanent
states. There are of course logical problems, here. (Using a basis to de-
scribe the same basis is usually a risky venture.) That Pythagoras could
accomplish this came in part from further discoveries such musical har-
monics and knowledge about what are now called Pythagorean triples.
This is somewhat different from the Ionian school, where the elemental
force of nature was some physical quantity such as water or air. Here,
we see a model of the universe with number as its base, a rather abstract
philosophy.

Even qualities, states, and other aspects of nature had descriptive
numbers. For example,

� The number one : the number of reason.

� The number two: the first even or female number, the number of
opinion.

� The number three: the first true male number, the number of
harmony.
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� The number four: the number of justice or retribution.

� The number five: marriage.

� The number six: creation

...

� The number ten: the tetractys, the number of the universe.

The Pythagoreans expended great effort to form the numbers from
a single number, the Unit, (i.e. one). They treated the unit, which is a
point without position, as a point, and a point as a unit having position.
The unit was not originally considered a number, because a measure is
not the things measured, but the measure of the One is the beginning
of number.6 This view is reflected in Euclid7 where he refers to the
multitude as being comprised of units, and a unit is that by virtue of
which each of existing things is called one. The first definition of
number is attributed to Thales, who defined it as a collection of units,
clearly a derivate based on Egyptians arithmetic which was essentially
grouping. Numerous attempts were made throughout Greek history to
determine the root of numbers possessing some consistent and satisfying
philosophical basis. This argument could certainly qualify as one of the
earliest forms of the philosophy of mathematics.

The greatest of the numbers, ten, was so named for several rea-
sons. Certainly, it is the base of Egyptian and Greek counting. It also
contains the ratios of musical harmonies: 2:1 for the octave, 3:2 for the
fifth, and 4:3 for the fourth. We may also note the only regular figures
known at that time were the equilateral triangle, square, and pentagon8
were also contained by within tetractys. Speusippus (d. 339 BCE)
notes the geometrical connection.

Dimension:

One point: generator of dimensions (point).

Two points: generator of a line of dimension one
6Aristotle, Metaphysics
7The Elements
8Others such as the hexagon, octagon, etc. are easily constructed regular polygons with

number of sides as multiples of these. The 15-gon, which is a multiple of three and Þve sides
is also constructible. These polygons and their side multiples by powers of two were all those
known.
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Three points: generator of a triangle of dimension two

Four points: generator of a tetrahedron, of dimension three.

The sum of these is ten and represents all dimensions. Note the ab-
straction of concept. This is quite an intellectual distance from �fingers
and toes�.

Classification of numbers. The distinction between even and odd
numbers certainly dates to Pythagoras. From Philolaus, we learn that

�...number is of two special kinds, odd and even, with a
third, even-odd, arising from a mixture of the two; and of
each kind there are many forms.�

And these, even and odd, correspond to the usual definitions, though
expressed in unusual way9. But even-odd means a product of two and
odd number, though later it is an even time an odd number. Other
subdivisions of even numbers10 are reported by Nicomachus (a neo-
Pythagorean∼100 A.D.).

� even-even � 2n

� even-odd � 2(2m+ 1)

� odd-even � 2n+1(2m+ 1)

Originally (our) number 2, the dyad, was not considered even,
though Aristotle refers to it as the only even prime. This particular
direction of mathematics, though it is based upon the earliest ideas
of factoring, was eventually abandoned as not useful, though even and
odd numbers and especially prime numbers play a major role in modern
number theory.

Prime or incomposite numbers and secondary or composite numbers
are defined in Philolaus:

9Nicomachus of Gerase (ß 100 CE) gives as ancient the deÞnition that an even number is
that which can be divided in to two equal parts and into two unequal part (except two), but
however divided the parts must be of the same type (i.e. both even or both odd).
10Bear in mind that there is no zero extant at this time. Note, the �experimentation� with

deÞnition. The same goes on today. DeÞnitions and directions of approach are in a continual
ßux, then and now.
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� A prime number is rectilinear, meaning that it can only be set out
in one dimension. The number 2 was not originally regarded as a
prime number, or even as a number at all.

� A composite number is that which is measured by (has a factor)
some number. (Euclid)

� Two numbers are prime to one another or composite to one
another if their greatest common divisor11 is one or greater than
one, respectively. Again, as with even and odd numbers there were
numerous alternative classifications, which also failed to survive
as viable concepts.12

For prime numbers, we have from Euclid the following theorem, whose
proof is considered by many mathematicians as the quintessentially most
elegant of all mathematical proofs.

Proposition. There are an infinite number of primes.

Proof. (Euclid) Suppose that there exist only finitely many primes
p1 < p2 < ... < pr. Let N = (p1)(p2)...(pr) > 2. The integer N − 1,
being a product of primes, has a prime divisor pi in common with N ;
so, pi divides N − (N − 1) = 1, which is absurd!

The search for primes goes on. Eratsothenes (276 B.C. - 197 B.C.)13,
who worked in Alexandria, devised a sieve for determining primes.
This sieve is based on a simple concept:

Lay off all the numbers, then mark of all the multiples of 2, then
3, then 5, and so on. A prime is determined when a number is not
marked out. So, 3 is uncovered after the multiples of two are marked
out; 5 is uncovered after the multiples of two and three are marked out.
Although it is not possible to determine large primes in this fashion,
the sieve was used to determine early tables of primes. (This makes a
wonderful exercise in the discovery of primes for young students.)
11in modern terms
12We have

� prime and incomposite � ordinary primes excluding 2,

� secondary and composite � ordinary composite with prime factors only,

� relatively prime � two composite numbers but prime and incomposite to another num-
ber, e.g. 9 and 25. Actually the third category is wholly subsumed by the second.

13Eratsothenes will be studied in somewhat more detail later, was gifted in almost every
intellectual endeavor. His admirers call him the second Plato and some called him beta,
indicating that he was the second of the wise men of antiquity.
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It is known that there is an infinite number of primes, but there
is no way to find them. For example, it was only at the end of the 19th

century that results were obtained that describe the asymptotic density
of the primes among the integers. They are relatively sparce as the
following formula

The number of primes ≤ n ∼ n

lnn

shows.14 Called the Prime Number Theorem, this celebrated results
was not even conjectured in its correct form until the late 18th century
and its proof uses mathematical machinery well beyond the scope of
the entirety of ancient Greek mathematical knowledge. The history of
this theorem is interesting in its own right and we will consider it in a
later chapter. For now we continue with the Pythagorean story.

The pair of numbers a and b are called amicable or friendly if
the divisors of a sum to b and if the divisors of b sum to a. The pair
220 and 284, were known to the Greeks. Iamblichus (C.300 -C.350
CE) attributes this discovery to Pythagoras by way of the anecdote of
Pythagoras upon being asked �what is a friend� answered �Alter ego�,
and on this thought applied the term directly to numbers pairs such as
220 and 284. Among other things it is not known if there is infinite set
of amicable pairs. Example: All primes are deficient. More interesting
that amicable numbers are perfect numbers, those numbers amicable to
themselves. Mathematically, a number n is perfect if the sum of its
divisors is itself.

Examples: ( 6, 28, 496, 8128, ...)

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

There are no direct references to the Pythagorean study of these
numbers, but in the comments on the Pythagorean study of amicable
numbers, they were almost certainly studied as well. In Euclid, we find
the following proposition.

Theorem. (Euclid) If 2p − 1 is prime, then (2p − 1)2p−1 is perfect.
Proof. The proof is straight forward. Suppose 2p − 1 is prime. We
identify all the factors of (2p − 1)2p−1. They are
14This asymptotic result if also expressed as follows. Let P (n) = The number of primes ≤

n. Then limn→∞ P (n)/[ n
lnn

] = 1.
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1, 2, 4, . . . , 2p−1, and
1 · (2p−1 − 1), 2 · (2p−1 − 1), 4 · (2p−1 − 1), , . . . , 2p−2 · (2p−1 − 1)

Adding we have15

p−1X
n=0

2n + (2p−1 − 1)
p−2X
n=0

2n = 2p − 1 + (2p − 1)(2p−1 − 1)

= (2p − 1)2p−1

and the proof is complete.

(Try, p = 2, 3, 5, and 7 to get the numbers above.) There is just
something about the word �perfect�. The search for perfect numbers
continues to this day. By Euclid�s theorem, this means the search is for
primes of the form (2p−1), where p is a prime. The story of and search
for perfect numbers is far from over. First of all, it is not known if there
are an infinite number of perfect numbers. However, as we shall soon
see, this hasn�t been for a lack of trying. Completing this concept of
describing of numbers according to the sum of their divisors, the number
a is classified as abundant or deficient16 according as their divisors
sums greater or less than a, respectively. Example: The divisors of 12
are: 6,4,3,2,1 � Their sum is 16. So, 12 is abundant. Clearly all prime
numbers, with only one divisor (namely, 1) are deficient.

In about 1736, one of history�s greatest mathematicians, Leonhard
Euler (1707 - 1783) showed that all even perfect numbers must have the
form given in Euclid�s theorem. This theorem stated below is singularly
remarkable in that the individual contributions span more than two
millenia. Even more remarkable is that Euler�s proof could have been
discovered with known methods from the time of Euclid. The proof
below is particularly elementary.

Theorem (Euclid - Euler) An even number is perfect if and only if it
has the form (2p − 1)2p−1 where 2p − 1 is prime.
Proof. The sufficiency has been already proved. We turn to the neces-
sity. The slight change that Euler brings to the description of perfect
numbers is that he includes the number itself as a divisor. Thus a per-
fect is one whose divisors add to twice the number. We use this new
definition below. Suppose that m is an even perfect number. Factor m
15Recall, the geometric series

PN

n=0
rn = rN+1−1

r−1 . This was also well known in antiquity

and is in Euclid, The Elements.
16Other terms used were over-perfect and defective respectively for these concepts.
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as 2p−1a, where a is odd and of course p > 1. First, recall that the sum
of the factors of 2p−1, when 2p−1 itself is included, is (2p − 1) Then

2m = 2pa = (2p − 1)(a+ · · ·+ 1)
where the term · · · refers to the sum of all the other factors of a. Since
(2p−1) is odd and 2p is even, it follows that (2p−1)|a, or a = b(2p−1).
First assume b > 1. Substituting above we have 2pa = 2p(2p− 1)b and
thus

2p(2p − 1)b = (2p − 1)((2p − 1)b+ (2p − 1) + b+ · · ·+ 1)
= (2p − 1)(2p + 2p b+ · · ·)

where the term · · · refers to the sum of all other the factors of a. Cancel
the terms (2p − 1). There results the equation

2pb = 2p + 2p b+ · · ·
which is impossible. Thus b = 1. To show that (2p − 1) is prime, we
write a similar equation as above

2p(2p − 1) = (2p − 1)((2p − 1) + · · ·+ 1)
= (2p − 1)(2p + · · ·)

where the term · · · refers to the sum of all other the factors of (2p− 1).
Now cancel (2p − 1). This gives

2p = (2p + · · ·)
If there are any other factors of (2p − 1), this equation is impossible.
Thus, (2p − 1) is prime, and the proof is complete.

4 The Primal Challenge

The search for large primes goes on. Prime numbers are so fundamental
and so interesting that mathematicians, amateur and professional, have
been studying their properties ever since. Of course, to determine if a
given number n is prime, it is necessary only to check for divisibility by
a prime up to

√
n. (Why?) However, finding large primes in this way

is nonetheless impractical17 In this short section, we depart history and
17The current record for largest prime has more than a million digits. The square root of

any test prime then has more than 500,000 digits. Testing a million digit number against all
such primes less than this is certainly impossible.
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take a short detour to detail some of the modern methods employed in
the search. Though this is a departure from ancient Greek mathematics,
the contrast and similarity between then and now is remarkable. Just
the fact of finding perfect numbers using the previous propositions has
spawned a cottage industry of determining those numbers p for which
2p−1 is prime. We call a prime number aMersenne Prime if it has the
form 2p − 1 for some positive integer p. Named after the friar Marin
Mersenne (1588 - 1648), an active mathematician and contemporary
of Fermat, Mersenne primes are among the largest primes known today.
So far 38 have been found, though it is unknown if there are others
between the 36th and 38th. It is not known if there are an infinity of
Mersenne primes. From Euclid�s theorem above, we also know exactly
38 perfect numbers. It is relatively routine to show that if 2p − 1 is
prime, then so also is p.18 Thus the known primes, say to more than
ten digits, can be used to search for primes of millions of digits.

Below you will find complete list of Mersenne primes as of January,
1998. A special method, called the Lucas-Lehmer test has been devel-
oped to check the primality the Mersenne numbers.
18If p = rs, then 2p − 1 = 2rs − 1 = (2r)s − 1 = (2r − 1)((2r)s−1 + (2r)s−2 · · ·+ 1)
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Number Prime Digits Mp Year Discoverer
(exponent)

1 2 1 1 � Ancient
2 3 1 2 � Ancient
3 5 2 3 � Ancient
4 7 3 4 � Ancient
5 13 4 8 1456 anonymous
6 17 6 10 1588 Cataldi
7 19 6 12 1588 Cataldi
8 31 10 19 1772 Euler
9 61 19 37 1883 Pervushin

10 89 27 54 1911 Powers
11 107 33 65 1914 Powers
12 127 39 77 1876 Lucas
13 521 157 314 1952 Robinson
14 607 183 366 1952 Robinson
15 1279 386 770 1952 Robinson
16 2203 664 1327 1952 Robinson
17 2281 687 1373 1952 Robinson
18 3217 969 1937 1957 Riesel
19 4253 1281 2561 1961 Hurwitz
20 4423 1332 2663 1961 Hurwitz
21 9689 2917 5834 1963 Gillies
22 9941 2993 5985 1963 Gillies
23 11213 3376 6751 1963 Gillies
24 19937 6002 12003 1971 Tuckerman
25 21701 6533 13066 1978 Noll - Nickel
26 23209 6987 13973 1979 Noll
27 44497 13395 26790 1979 Nelson - Slowinski
28 86243 25962 51924 1982 Slowinski
29 110503 33265 66530 1988 Colquitt - Welsh
30 132049 39751 79502 1983 Slowinski
31 216091 65050 130100 1985 Slowinski
32 756839 227832 455663 1992 Slowinski & Gage
33 859433 258716 517430 1994 Slowinski & Gage
34 1257787 378632 757263 1996 Slowinski & Gage
35 1398269 420921 841842 1996 Armengaud, Woltman,
?? 2976221 895932 1791864 1997 Spence, Woltman,
?? 3021377 909526 1819050 1998 Clarkson, Woltman, Kurowski
?? 26972593 2098960 1999 Hajratwala, Kurowski
?? 213466917 4053946 2001 Cameron, Kurowski
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What about odd perfect numbers? As we have seen Euler char-
acterized all even perfect numbers. But nothing is known about odd
perfect numbers except these few facts:

� If n is an odd perfect number, then it must have the form

n = q2 · p2k+1,
where p is prime, q is an odd integer and k is a nonnegative integer.

� It has at least 8 different prime factors and at least 29 prime factors.

� It has at least 300 decimal digits.

Truly a challenge, finding an odd perfect number, or proving there are
none will resolve the one of the last open problems considered by the
Greeks.

5 Figurate Numbers.

Numbers geometrically constructed had a particular importance to the
Pythagoreans.

Triangular numbers. These numbers are 1, 3, 6, 10, ... . The
general form is the familiar

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Triangular Numbers
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Square numbers These numbers are clearly the squares of the integers
1, 4, 9, 16, and so on. Represented by a square of dots, they prove(?)
the well known formula

1 + 3 + 5 + . . .+ (2n− 1) = n2.

1 2 3 4 5 6
1

3

5

7

9

11

Square Numbers

The gnomon is basically an architect�s template that marks off
�similar� shapes. Originally introduced to Greece by Anaximander,
it was a Babylonian astronomical instrument for the measurement of
time. It was made of an upright stick which cast shadows on a plane
or hemispherical surface. It was also used as an instrument to measure
right angles, like a modern carpenter�s square. Note the gnomon has
been placed so that at each step, the next odd number of dots is placed.
The pentagonal and hexagonal numbers are shown in the below.

Pentagonal Numbers Hexagonal Numbers

Figurate Numbers of any kind can be calculated. Note that the se-
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quences have sums given by

1 + 4 + 7 + . . .+ (3n− 2) = 3

2
n2 − 1

2
n

and
1 + 5 + 9 + . . .+ (4n− 3) = 2n2 − n.

Similarly, polygonal numbers of all orders are designated; this
process can be extended to three dimensional space, where there results
the polyhedral numbers. Philolaus is reported to have said:

All things which can be known have number; for it is not
possible that without number anything can be either con-
ceived or known.

6 Pythagorean Geometry

6.1 Pythagorean Triples and The Pythagorean Theorem

Whether Pythagoras learned about the 3, 4, 5 right triangle while he
studied in Egypt or not, he was certainly aware of it. This fact though
could not but strengthen his conviction that all is number. It would
also have led to his attempt to find other forms, i.e. triples. How might
he have done this?

One place to start would be with the square numbers, and arrange
that three consecutive numbers be a Pythagorean triple! Consider for
any odd number m,

m2 + (
m2 − 1
2

)2 = (
m2 + 1

2
)2

which is the same as

m2 +
m4

4
− m

2

2
+
1

4
=
m4

4
+
m2

2
+
1

4

or
m2 = m2
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Now use the gnomon. Begin by placing the gnomon around n2.
The next number is 2n+ 1, which we suppose to be a square.

2n+ 1 = m2,

which implies
n =

1

2
(m2 − 1),

and therefore
n+ 1 =

1

2
(m2 + 1).

It follows that

m2 +
m4

4
− m

2

2
+
1

4
=
m4

4
+
m2

2
+
1

4

This idea evolved over the years and took other forms. The essential fact
is that the Pythagoreans were clearly aware of the Pythagorean theorem

Did Pythagoras or the Pythagoreans actually prove the Pythagorean the-
orem? (See the statement below.) Later writers that attribute the proof
to him add the tale that he sacrificed an ox to celebrate the discovery.
Yet, it may have been Pythagoras�s religious mysticism may have pre-
vented such an act. What is certain is that Pythagorean triples were
known a millennium before Pythagoras lived, and it is likely that the
Egyptian, Babylonian, Chinese, and India cultures all had some �proto-
proof�, i.e. justification, for its truth. The proof question remains.

No doubt, the earliest �proofs� were arguments that would not
satisfy the level of rigor of later times. Proofs were refined and retuned
repeatedly until the current form was achieved. Mathematics is full of
arguments of various theorems that satisfied the rigor of the day and
were later replaced by more and more rigorous versions.19 However,
probably the Pythagoreans attempted to give a proof which was up
to the rigor of the time. Since the Pythagoreans valued the idea of
proportion, it is plausible that the Pythagoreans gave a proof based on
proportion similar to Euclid�s proof of Theorem 31 in Book VI of The
Elements. The late Pythagoreans (e400 BCE) however probably did
supply a rigorous proof of this most famous of theorems.
19One of the most striking examples of this is the Fundamental Theorem of Algebra, which

asserts the existence of at least one root to any polynomial. Many proofs, even one by Euler,
passed the test of rigor at the time, but it was Carl Friedrich Gauss (1775 - 1855) that gave
us the Þrst proof that measures up to modern standards of rigor.
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There are numerous proofs, more than 300 by one count, in the
literature today, and some of them are easy to follow. We present three
of them. The first is a simple appearing proof that establishes the
theorem by visual diagram. To �rigorize� this theorem takes more than
just the picture. It requires knowledge about the similarity of figures,
and the Pythagoreans had only a limited theory of similarity.

(a+ b)2 = c2 + 4(
1

2
ab)

a2 + 2ab+ b2 = c2 + 2ab

a2 + b2 = c2

b

a

b a

b

a

ba

c

c
c

c

This proof is based upon Books I and
II of Euclid�s Elements, and is sup-
posed to come from the figure to the
right. Euclid allows the decomposi-
tion of the square into the two boxes
and two rectangles. The rectangles
are cut into the four triangles shown
in the figure.

b

a

ba

b

a

ba

Then the triangle are reassembled into the first figure.

The next proof is based on similarity and proportion and is a
special case of Theorem 31 in Book VI of The Elements. Consider the
figure below.
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A

B CD

If ABC is a right triangle, with right angle at A, and AD is perpen-
dicular to BC, then the triangles DBA and DAC are similar to ABC.
Applying the proportionality of sides we have

|BA|2 = |BD| |BC|
|AC|2 = |CD| |BC|

It follows that
|BA|2 + |AC|2 = |BC|2

Finally we state and prove what is now called the Pythagorean Theorem
as it appears in Euclid The Elements.

Theorem I-47. In right-angled triangles, the square upon the hy-
potenuse is equal to the sum of the squares upon the legs.

A C

B

D

E

L

M N

G

Pythagorean Theorem

Proof requirements:
   SAS congruence,
   Triangle area = /2
        = base
       = height

 hb
b

 h
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This diagram is identical to the original figure used in the Euclid�s
proof theorem. The figure was known to Islamic mathematicians as the
Figure of the Bride.

Sketch of Proof. Note that triangles4ADC and4ADE are congruent
and hence have equal area. Now slide the vertex C of 4ADC to B.
Slide also the vertex B of 4ADE to L. Each of these transformations
do not change the area. Therefore, by doubling, it follows that the area
of the rectangle ALME is equal to the area of the square upon the side
AB. Use a similar argument to show that the area of the square upon
the side BC equals the area of the rectangle LCNM .

This stamp was issued by Greece. It
depicts the Pythagorean theorem.

6.2 The Golden Section

From Kepler we have these words

�Geometry has two great treasures: one is the Theorem
of Pythagoras; the other, the division of a line into extreme
and mean ratio. The first we may compare to a measure of
gold; the second we may name a precious jewel.�
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A line AC divided into extreme and mean ratio is defined to mean
that it is divided into two parts, AP and PC so that AP:AC=PC:AP,
where AP is the longer part.

A           Q      P            C

Golden Section

AP : AC = PC : AP

Let AP = x and AC = a. Then the golden section is
x

a
=
a− x
x

,

and this gives the quadratic equation

x2 + ax− a2.
The solution is

x =
−1±√5

2
a.

The golden section20 is the positive root:

x =

√
5− 1
2

∼ .62

The point Q in the diagram above is positioned at a distance from
A so that |AQ| = |PC|. As such the segment AP is divided into mean
and extreme ratio by Q. Can you prove this? Of course, this idea can
be applied recursively, to successive refinements of the segment all into
such sections.

In the figure to the right
Q1, Q2, Q3, . . . are selected so
that |AQ1| = |QP |, |AQ2| =
|Q1Q|,
|AQ3| = |Q2Q1|, . . . respectively.

A           Q      P            C

Golden Section

| AP | : | AC | = | PC | : | AP |

Q1

Q3

Q2

20...now called the Golden ratio. Curiously, this number has recurred throughout the devel-
opment of mathematics. We will see it again and again.
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The points Q1, Q2, , Q3, . . . divide the segments AQ, AQ1, | >
AQ2, . . . into extreme and mean ratio, respectively.

The Pythagorean Pentagram

And this was all connected with the construction of a pentagon. First
we need to construct the golden section. The geometric construction,
the only kind accepted21, is illustrated below.

Assume the square ABCE has side length a. Bisecting DC at E con-
struct the diagonal AE, and extend the segment ED to EF, so that
EF=AE. Construct the square DFGH. The line AHD is divided into
extrema and mean ratio.

A B

CD EF

G H

Golden Section

Verification:

|AE|2 = |AD|2 + |DE|2 = a2 + (a/2)2 = 5

4
a2.

Thus,

|DH| = (
√
5

2
− 1
2
)a =

√
5− 1
2

a.

The key to the compass and ruler construction of the pentagon is
the construction of the isosceles triangle with angles 36o, 72o, and 72o.
We begin this construction from the line AC in the figure below.
21In actual fact, the Greek �Þxation� on geometric methods to the exclusion of algebraic

methods can be attributed to the inßuence of Eudoxus
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α

A

B

CD

E
P

Q

Pentagon

α

β

180 − β + 2α = 180
β = 72

A P Q C

Divide a line AC into the �section� with respect to both endpoints.
So PC:AC=AP:PC; also AQ:AC=QC:AQ. Draw an arc with center A
and radius AQ. Also, draw an arc with center C with radius PC.
Define B to be the intersection of these arcs. This makes the triangles
AQB and CBP congruent. The triangles BPQ and AQB are similar,
and therefore PQ : QB = QP : AB. Thus the angle 6 PBQ =
6 QABAB = AQ.

Define α := 6 PAB and β := 6 QPB. Then 180o−β−2α = 180o.
This implies α = 1

2
β, and hence (2 + 1

2
)β = 180. Solving for β we,

get β = 72o. Since 4 PBQ is isoceles, the angle 6 QBP = 32o. Now
complete the line BE=AC and the line BD=AC and connect edges AE,
ED and DC. Apply similarity of triangles to show that all edges have
the same length. This completes the proof.

6.3 Regular Polygons

The only regular polygons known to the Greeks were the equilaterial
triangle and the pentagon. It was not until about 1800 that C. F. Guass
added to the list of constructable regular polyons by showing that there
are three more, of 17, 257, and 65,537 sides respectively. Precisely, he
showed that the constructable regular polygons must have

2mp1p2 . . . pr
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sides where the p1, . . . , pr are distinct Fermat primes. A Fermat prime
is a prime having the form

22
n

+ 1.

In about 1630, the Frenchman Pierre de Fermat (1601 - 1665) con-
jectured that all numbers of this kind are prime. But now we know
differently.
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Pierre Fermat (1601-1665), was a court
attorney in Toulouse (France). He was an
avid mathematician and even participated in
the fashion of the day which was to recon-
struct the masterpieces of Greek mathemat-
ics. He generally refused to publish, but
communicated his results by letter.

Are there any other Fermat primes? Here is all that is known to date.
It is not known if any other of the Fermat numbers are prime.

p 22
p
+ 1 Factors Discoverer

0 3 3 ancient
1 5 5 ancient
2 17 17 ancient
3 257 257 ancient
4 65537 65537 ancient
5 4,294,957,297 641, 6,700,417 Euler, 1732
6 21 274177,67280421310721
7 39 digits composite
8 78 digits composite
9 617 digits composite Lenstra, et.al., 1990
10 709 digits unknown
11 1409 digits composite Brent and Morain, 1988
12-20 composite

By the theorem of Gauss, there are constructions of regular poly-
gons of only 3, 5 ,15 , 257, and 65537 sides, plus multiples,

2mp1p2 . . . pr

sides where the p1, . . . , pr are distinct Fermat primes.



Pythagoras and the Pythagoreans 27

6.4 More Pythagorean Geometry

Contributions22 by the Pythagoreans include

� Various theorems about triangles, parallel lines, polygons, circles,
spheres and regular polyhedra. In fact, the sentence in Proclus
about the discovery of the irrationals also attributes to Pythago-
ras the discovery of the five regular solids (called then the �cosmic
figures�). These solids, the tetrahedron (4 sides, triangles), cube (6
sides, squares, octahedron (8 sides, triangles), dodecahedron (12
sides, pentagons), and icosahedron (20 sides, hexagons) were pos-
sibly known to Pythagoras, but it is unlikely he or the Pythagoreans
could give rigorous constructions of them. The first four were as-
sociated with the four elements, earth, fire, air, and water, and
because of this they may not have been aware of the icosahedron.
Usually, the name Theaetetus is associated with them as the math-
ematician who proved there are only five, and moreover, who gave
rigorous constructions.

Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

� Work on a class of problems in the applications of areas. (e.g. to
construct a polygon of given area and similar to another polygon.)

� The geometric solutions of quadratics. For example, given a line
segment, construct on part of it or on the line segment extended a
parallelogram equal to a given rectilinear figure in area and falling

22These facts generally assume a knowledge of the Pythagorean Theorem, as we know it.
The level of rigor has not yet achieved what it would become by the time of Euclid
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short or exceeding by a parallelogram similar to a given one. (In

modern terms, solve
b

c
x2 + ax = d.)

6.5 Other Pythagorean Geometry

We know from from Eudemus that the Pythagoreans discovered the
result that the sum of the angles of any triangle is the sum of two right
angles. However, if Thales really did prove that every triangle inscribed
in a right triangle is a right triangle,
he surely would have noted the result
for right triangles. This follows directly
from observing that the base angles of
the isosceles traingles formed from the
center as in the figure just to the right.
The proof for any triangle follows
directly. However, Eudemus notes

A

B

CO

a different proof. This proof requires the �alternating interior angles�
theorem. That is:
Theorem. (Euclid, The Elements Book
I, Proposition 29.) A straight line
falling on parallel straight lines make
the alternate angles equal to one
another, the exterior angle equal to the
interior and opposite angle, and the
interior angles on the same side equal
to two right angles.

A

B

C

D E

From this result and the figure just above, note that the angles
/ABD = /CAB and /CBE = /ACB. The result follows.

The quadrature of certain lunes (crescent shaped regions) was
performed by Hippocrates of Chios. He is also credited with the
arrangement of theorems in an order so that one may be proved from a
previous one (as we see in Euclid).
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BA

LuneC

D

We wish to determine the area of the lune ABCD, where the large
segment ABD is similar to the smaller segment (with base on one leg
of the right isosceles triangle 4ABC). Because segments are to each
other as the squares upon their bases, we have the

Proposition:The area of the large lune ABCD is the area of the triangle
4ABC.

This proposition was among the first that determined the area of a curvi-
linear figure in terms of a rectilinear figure. Quadratures were obtained
for other lunes, as well. There resulted great hope and encouragement
that the circle could be squared. This was not to be.

7 The Pythagorean Theory of Proportion

Besides discovering the five regular solids, Pythagoras also discovered
the theory of proportion. Pythagoras had probably learned in Babylon
the three basic means, the arithmetic, the geometric, and the subcon-
trary (later to be called the harmonic).

Beginning with a > b > c and denoting b as the �mean of a
and c, they are:

1
a− b
b− c =

a

a
arithmetic a+ c = 2b
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2
a− b
b− c =

a

b
geometric ac = b2

3
a− b
b− c =

a

c
harmonic

1

a
+
1

c
=
2

b

The most basic fact about these proportions or means is that if a > c,
then a > b > c. In fact, Pythagoras or more probably the Pythagore-
ans added seven more proportions. Here is the complete list from the
combined efforts of Pappus and Nicomachus.

Formula Equivalent

4
a− b
b− c =

c

a

a2 + c2

a+ c
= b

5
a− b
b− c =

c

b
a = b+ c− c

2

b

6
a− b
b− c =

b

a
c = a+ b− a

2

b

7
a− c
b− c =

a

c
c2 = 2ac− ab

8
a− c
a− b =

a

c
a2 + c2 = a(b+ c)

9
a− c
b− c =

b

c
b2 + c2 = c(a+ b)

10
a− c
a− b =

b

c
ac− c2 = ab− b2

11
a− c
a− b =

a

b
a2 = 2ab− bc

The most basic fact about these proportions or means is that if a > c,
then a > b > c. (The exception is 10, where b must be selected
depending on the relative magnitudes of a and c, and in one of the
cases b = c.) What is very well known is the following relationship
between the first three means. Denote by ba, bg, and bh the arithmetic,
geometric, and harmonic means respectively. Then

ba > bg > bh (1)

The proofs are basic. In all of the statements below equality occurs if
and only if a = c. First we know that since (α − γ)2 ≥ 0, it follows
that α2 + γ2 ≥ 2αγ. Apply this to α =

√
a and β =

√
b to conclude
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that a + c > 2
√
ac, or ba ≥ bg. Next, we note that bh = 2

ac

a+ b
or

b2g = bhba. Thus ba ≥ bg ≥ bh.

What is not quite as well known is that the fourth mean, some-
times called the subcontrary to the harmonic mean is larger than all
the others except the seventh and the ninth, where there is no greater
than or less than comparison over the full range of a and c. The proof
that this mean is greater than ba is again straight forward. We easily
see that

b =
a2 + c2

a+ c
=

(a+ c)2 − 2ac
a+ c

= 2ba −
b2g
ba
≥ ba

by (1). The other proofs are omitted.

Notice that the first six of the proportions above are all of a

specific generic type, namely having the form
a− b
b− c = · · ·. It turns

out that each of the means (the solution for b) are comparable. The
case with the remaining five proportions is very much different. Few
comparisons are evident, and none of the proportions are much in use
today. The chart of comparison of all the means below shows a plus
(minus) if the mean corresponding to the left column is greater (less)
than that of the top row. If there is no comparison in the greater or less
than sense, the word �No� is inserted.
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i/j 1 2 3 4 5 6 7 8 9 10 11
1 + + - - - No No No No +
2 - + - - - No No - No No
3 - - - - - - No - No No
4 + + + + + No + No + +
5 + + + - + No + No + +
6 + + + - - No No No No +
7 No No + No No No No - No No
8 No No No - - No No No + +
9 No + + No No No + No No No
10 No No No - - No No - No No
11 - No No - - - No - No No

Comparing Pythagorean Proportions

Linking qualitative or subjective terms with mathematical propor-
tions, the Pythagoreans called the proportion

ba : bg = bg : bh

the perfect proportion. The proportion

a : ba = bh : c

was called the musical proportion.

8 The Discovery of Incommensurables

Irrationals have variously been attributed to Pythagoras or to the Pythagore-
ans as has their study. Here, again, the record is poor, with much of
it in the account by Proclus in the 4th century CE. The discovery is
sometimes given to Hippasus of Metapontum (5th cent BCE). One
account gives that the Pythagoreans were at sea at the time and when
Hippasus produced (or made public) an element which denied virtually
all of Pythagorean doctrine, he was thrown overboard. However, later
evidence indicates that Theaetetus23 of Athens (c. 415 - c. 369 BCE)
23the teacher of Plato
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discovered the irrationality of
√
3,
√
5, . . . ,

√
17, and the dates suggest

that the Pythagoreans could not have been in possession of any sort of
�theory� of irrationals. More likely, the Pythagoreans had noticed their
existence. Note that the discovery itself must have sent a shock to the
foundations of their philosophy as revealed through their dictum All is
Number, and some considerable recovery time can easily be surmised.

Theorem.
√
2 is incommensurable with 1.

Proof. Suppose that
√
2 = a

b
, with no common factors. Then

2 =
a2

b2

or
a2 = 2b2.

Thus24 2 | a2, and hence 2 | a. So, a = 2c and it follows that

2c2 = b2,

whence by the same reasoning yields that 2 | b. This is a contradiction.

Is this the actual proof known to the Pythagoreans? Note: Unlike
the Babylonians or Egyptians, the Pythagoreans recognized that this
class of numbers was wholly different from the rationals.

�Properly speaking, we may date the very beginnings of �theo-
retical� mathematics to the first proof of irrationality, for in �practical�
(or applied) mathematics there can exist no irrational numbers.�25 Here
a problem arose that is analogous to the one whose solution initiated
theoretical natural science: it was necessary to ascertain something that
24The expression m | n where m and n are integers means that m divides n without

remainder.
25I. M. Iaglom, Matematiceskie struktury i matematiceskoie modelirovanie. [Mathematical

Structures and Mathematical Modeling] (Moscow: Nauka, 1980), p. 24.
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it was absolutely impossible to observe (in this case, the incommensu-
rability of a square�s diagonal with its side).

The discovery of incommensurability was attended by the intro-
duction of indirect proof and, apparently in this connection, by the
development of the definitional system of mathematics.26 In general,
the proof of irrationality promoted a stricter approach to geometry, for it
showed that the evident and the trustworthy do not necessarily coincide.

9 Other Pythagorean Contributions.

The Pythagoreans made many contributions that cannot be described in
detail here. We note a few of them without commentary.

First of all, connecting the concepts of proportionality and relative
prime numbers, the theorem of Archytas of Tarantum (c. 428 - c. 327
BCE) is not entirely obvious. It states that there is no mean proportional
between successive integers. Stated this way, the result is less familiar
than using modern terms.

Theorem. (Archytas) For any integer n, there are no integral solutions
a to

A

a
=
a

B
where A and B are in the ratio n : n+ 1.

Proof. The proof in Euclid is a little cumbersome, but in modern
notation it translates into this: Let C and D be the smallest numbers
in the same ratio as A and B. That is C and D are relatively prime.
Let D = C + E Then

C

D
=

C

C + E
=

n

n+ 1

which implies that Cn+ C = Cn+ En. Canceling the terms Cn, we
see that E divides C. Therefore C and D are not relatively prime, a
contradiction.
26A. Szabo �Wie ist die Mathematik zu einer deduktiven Wissenschaft geworden?�, Acta

Antiqua, 4 (1956), p. 130.
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The Pythagoreans also demonstrated solutions to special types of
linear systems. For instance, the bloom of Thymaridas (c. 350 BCE)
was a rule for solving the following system.

x+ x1 + x2 + . . .+ xn = s

x+ x1 = a1

x+ x2 = a2

. . .

x+ xn = an

This solution is easily determined as

x =
(a1 + . . .+ an)− s

n− 2
It was used to solve linear systems as well as to solve indeterminate
linear equations.

The Pythagoreans also brought to Greece the earth-centered cos-
mology that became the accepted model until the time of Copernicus
more that two millenia later. Without doubt, this knowledge originated
in Egypt and Babylon. Later on, we will discuss this topic and its
mathematics in more detail.
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